Closing Thur: \quad HW 14.2 (part 1)
Closing next Tue: HW 14.2 (part 2)
Closing next Thur: HW 14.3/4 (last HW)
Final: Sat, March 10, 5:00-7:50pm, PAA Building

Entry Task: Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ for

$$
z=5 \ln (x)-x^{4} y^{2} e^{3 x}-\frac{4}{y^{2}}
$$

Final Time and Locations
Sat, March $10^{\text {th }}$
5:00-7:50pm
The room where you take the exam depends on your quiz section. Know your quiz section!

Building
PAA -Physics/Astronomy Auditoriums
For BC/BD, AC/AD: PAA A102
For $A A / A B, B B$: PAA A118
For BA: PAA A110

Interpreting as a rate
Your company produces and sells two products (hats and sunglasses)
$x=$ number of hats
$y=$ number of glasses
3. Estimate the values of

$$
\begin{aligned}
& \frac{P(5.001,8)-P(5,8)}{0.001} \approx \\
& \frac{P(5,8.01)-P(5,8)}{0.01} \approx
\end{aligned}
$$

Profit is given by

$$
P(x, y)=-3 x^{2}+30 x-5 y^{2}+130 y+2 x y-100
$$

1. Find the partial derivatives.
2. Find and interpret

$$
P_{x}(5,8) \text { and } P_{y}(5,8)
$$

From HW: (Cobb-Douglas Model)
$Q=$ units produced
$K=$ capital expenditures
(in thousand dollars)
$L=$ hours of labor

$$
Q=75 K^{1 / 3} L^{2 / 3}
$$

Assume there are:
$\$ 2,744,000$ in capital expenditures and 4913 in total labor hours.
Find and interpret $\frac{\partial Q}{\partial K}$ and $\frac{\partial Q}{\partial L}$.

Definition

A point (a, b) is a critical point for a function $z=f(x, y)$ if BOTH

$$
f_{x}(a, b)=0 \quad \text { and } \quad f_{y}(a, b)=0
$$

Going back to our last example:

$$
P(x, y)=-3 x^{2}+30 x-5 y^{2}+130 y+2 x y-100
$$

Find the critical point.

Graphical Interpretation

Pretend you are skiing on the surface
$z=f(x, y)=15-x^{2}-y^{2}$

1. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$
2. Find and interpret $f_{x}(7,4)$ and $f_{y}(7,4)$
3. Find the critical point.

Aside: Graphical Interpretations

Example:

Find all critical points of

$$
f(x, y)=2 x^{4}+y^{2}-4 x y+1
$$

