Closing Thur: HW 14.2 (part 1) Closing *next* Tue: HW 14.2 (part 2) Closing *next* Thur: HW 14.3/4 (last HW) *Final*: Sat, March 10, 5:00-7:50pm, PAA Building

Entry Task: Find
$$\frac{\partial z}{\partial x}$$
 and $\frac{\partial z}{\partial y}$ for
 $z = 5\ln(x) - x^4y^2e^{3x} - \frac{4}{y^2}$

Final Time and Locations

Sat, March 10th 5:00-7:50pm *The room where you take the exam depends on your quiz section. Know your quiz section!*

Building **PAA –Physics/Astronomy Auditoriums** For BC/BD, AC/AD: PAA A102 For AA/AB, BB: PAA A118 For BA: PAA A110

Interpreting as a rate

Your company produces and sells **two** products (hats and sunglasses)

x = number of hats y = number of glasses Profit is given by 3. Estimate the values of $\frac{P(5.001,8) - P(5,8)}{0.001} \approx \frac{P(5,8.01) - P(5,8)}{0.01} \approx$

$$P(x,y) = -3x^2 + 30x - 5y^2 + 130y + 2xy - 100$$

- 1. Find the partial derivatives.
- 2. Find and interpret

 $P_{\chi}(5,8)$ and $P_{\chi}(5,8)$.

From HW: (Cobb-Douglas Model)

- Q = units produced
- K = capital expenditures
 - (in thousand dollars)
- L = hours of labor

$$Q = 75K^{1/3}L^{2/3}$$

Assume there are:

\$2,744,000 in capital expenditures and 4913 in total labor hours.

Find and interpret $\frac{\partial Q}{\partial K}$ and $\frac{\partial Q}{\partial L}$.

Definition

A point (a,b) is a *critical point* for a function z = f(x, y) if BOTH $f_x(a, b) = 0$ and $f_y(a, b) = 0$.

Going back to our last example:

 $P(x,y) = -3x^2 + 30x - 5y^2 + 130y + 2xy - 100$

Find the critical point.

Graphical Interpretation Pretend you are skiing on the surface $z = f(x, y) = 15 - x^2 - y^2$

- 1. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$
- 2. Find and interpret $f_x(7,4)$ and $f_y(7,4)$
- 3. Find the critical point.

Aside: Graphical Interpretations

Example: Find all critical points of $f(x, y) = 2x^4 + y^2 - 4xy + 1$